Делаем магниты на холодильник (и не только) из подручных, бросовых и природных материалов. Как сделать сильный магнит своими руками в домашних условиях? Как сделать мощный магнит своими руками

Магнитный двигатель хорош тем, что он не требует никаких энергетических затрат. Вращение механизма происходит под действием магнитного поля.поэтому нам предстоит попробовать один из вариантов создания такового.

На нашем видео вы можете увидеть, как проводится такой опыт и что из этого получается.

Для нашего эксперимента нам понадобится:
- диск из оргстекла;
- магниты;
- заготовка из шпинделя, закрепленного на металлическом корпусе;
- двухсторонний скотч.

Магниты необходимо с одно стороны слегка подточить под углом, чтобы добиться лучшего эффекта.

На диск, из оргстекла по периметру наклеиваем небольшие кусочки магнита. Их крепим на двухсторонний скотч и располагаем сточенными краями наружу. Следите за тем, чтобы сточенные края всех магнитов были направлены в одну и ту же сторону.


Полученный диск с магнитами крепим на шпиндель и проверяем, чтобы он свободно вращался, ни за что не цепляясь.

Если поднесем к данной конструкции маленький магнит, такой же как у нас наклеены на диск, то в принципе ничего не измениться. Можно попробовать повращать конечно диск, эффекта или не будет вовсе или он будет едва заметным.


Попробуем поднести магнит побольше и посмотреть, что произойдет. Результата от этого никакого нет. При подкручивании диска рукой, механизм все равно останавливается в промежутке между магнитами.


Если взять половинку магнита и поднести к нашему механизму, можно заметить, что он после подкручивания слегка продолжает крутиться под воздействием магнитного поля.


Теперь проверим, как будет вращаться наш механизм, если убрать с диска магнитики через один, т.е. сделать большие промежутки между ними. Смотрим, что получается, подставляя три варианта наших магнитов. Диск по-прежнему останавливается в промежутках теперь уже во всех трех вариантах.

После проведенного опыта можно сделать вывод: что таким образом создать магнитный двигатель не получилось. Нужно пробовать другие варианты.

Ещё в Древнем Китае обратили внимание на свойство некоторых металлов притягивать. Это физическое явление получило название магнетизм, а материалы, обладающие этой способностью, назвали магнитами. Сейчас это свойство активно используется в радиолектронике и промышленности, а особо мощные магниты используют, в том числе и для поднятия и транспортировки больших объёмов металла. Применяются свойства этих материалов и в быту – многим известны магнитные открытки и буквы для обучения детей. Какие магниты бывают, где их используют, что такое неодимовый, об этом расскажет этот текст.

Виды магнитов

В современном мире их классифицируют по трём основным категориям по типу создаваемого ими магнитного поля:

  • постоянные, состоящие из природного материала, обладающего этими физическими свойствами, например, неодимовые;
  • временные, обладающие этими свойствами во время нахождения в поле действия магнитного поля;
  • электромагниты – это витки провода на сердечнике, создающие электромагнитное поле при прохождении энергии по проводнику.

В свою очередь, наиболее распространённые постоянные магниты подразделяются на пять основных классов, по своему химическому составу:

  • ферромагниты на основе железа и его сплавов с барием и стронцием;
  • неодимовые магниты, имеющие в своём составе редкоземельный металл неодим, в сплаве с железом и бором (Nd-Fe-B, NdFeB, NIB);
  • самариево-кобальтовые сплавы, имеющие сравнимые с неодимовым магнитные характеристики, но в тоже время более широкий температурный диапазон применения (SmCo);
  • сплав Альнико, он же ЮНДК, этот сплав отличается высокой коррозионной устойчивостью и высоким температурным пределом;
  • магнитопласты, представляющие собой смесь магнитного сплава со связующим, это позволяет создать изделия различных форм и размеров.

Сплавы магнитных металлов хрупкие и достаточно дешёвые изделия, обладающие средними качествами. Обычно это сплав оксида железа с ферритами стронция и бария. Температурный диапазон стабильной работы магнита не выше 250-270°C. Технические характеристики:

  • коэрцитивная сила – около 200 кА/м;
  • остаточная индукция – до 0,4 Тесла;
  • средний срок службы – 20-30 лет.

Что такое неодимовые магниты

Это наиболее мощные из постоянных, но в тоже время достаточно хрупкие и нестойкие к коррозии, в основе этих сплавов лежит редкоземельный минерал – неодим. Это самый сильный магнит из постоянных.

Характеристики:

  • коэрцитивная сила – около 1000 кА/м;
  • остаточная индукция – до 1,1 Тесла;
  • средний срок службы – до 50 лет.

Их применение ограничивает только низкий предел температурного диапазона, для наиболее термостойких марок неодимового магнита это 140°C, в то время как менее стойкие разрушаются при температуре свыше 80 градусов.

Самариевокобальтовые сплавы

Обладающие высокими техническими характеристиками, но в тоже время очень дорогие сплавы.

Характеристики:

  • коэрцитивная сила – около 700 кА/м;
  • остаточная индукция – до 0,8-1,0 Тесла;
  • средний срок службы – 15-20 лет.

Они используются для сложных условий работы: высокие температуры, агрессивные среды и большая нагрузка. Из-за сравнительно высокой стоимости их применение несколько ограничено.

Альнико

Порошковый сплав из кобальта (37-40%) с добавлением алюминия и никеля также обладает хорошими эксплуатационными характеристиками, кроме того способностью сохранять свои магнитные свойства при температурах до 550°C. Их технические характеристики ниже, чем у ферромагнитных сплавов и составляют:

  • коэрцитивная сила – около 50 кА/м;
  • остаточная индукция – до 0,7 Тесла;
  • средний срок службы – 10-20 лет.

Но, несмотря на это, именно этот сплав наиболее интересен для применения в научной сфере. Кроме того, добавление в сплав титана и ниобия способствует повышению коэрцетивной силы сплава до 145-150 кА/м.

Магнитопласты

Используются в основном в быту для изготовления магнитных открыток, календарей и прочих мелочей, характеристики магнитного поля незначительно падают из-за меньшей концентрации магнитного состава.

Это основные типы постоянных магнитов. Электромагнит по принципу действия и применению несколько отличается от таких сплавов.

Интересно. Неодимовые магниты используются практически повсеместно, в том числе и в дизайне для создания парящих конструкций, и в культуре для этих же целей.

Электромагнит и демагнитизатор

Если электромагнит создаёт поле при прохождении через витки обмотки электроэнергии, то демагнитизатор, наоборот, снимает остаточное магнитное поле. Применять этот эффект можно в разных целях. Например, что можно сделать демагнитизатором? Ранее демагнитизатор использовался для размагничивания воспроизводящих головок магнитофонов, кинескопов телевизоров и выполнения иных функций подобного рода. Сегодня его зачастую применяют в несколько незаконных целях, для размагничивания счётчиков после применения на них магнитов. Кроме того это устройство можно и нужно применять для снятия остаточного магнитного поля с инструментов.

Состоит демагнитизатор обычно из обычной катушки, иначе говоря, по устройству этот прибор полностью повторяет собой электромагнит. На катушку подаётся переменное напряжение, после чего устройство, с которого мы снимаем остаточное поле, убирается из зоны действия демагнитизатора, после чего он отключается

Важно! Использование магнита для «подкрутки» счётчика незаконно и влечёт за собой штраф. Неправильное использование демагнитизатора может привести к полному размагничиванию прибора и его выходу из строя.

Самостоятельное изготовление магнита

Для этого достаточно найти металлический брусок из стали или другого ферросплава, можно использовать составной сердечник трансформатора, после чего сделать обмотку. Намотать на сердечник несколько витков медной обмоточной проволоки. Для безопасности стоит включить в схему плавкий предохранитель. Как сделать мощный магнит? Для этого нужно увеличивать силу тока в обмотке, чем она выше, тем больше магнитная сила устройства.

При включении устройства в сеть и подаче электроэнергии на обмотку, устройство будет притягивать металл, то есть фактически это самый настоящий электромагнит, пусть и несколько упрощённой конструкции.

В современном мире широко используется энергия магнитного поля. Как в промышленности, радиолектронике и электрике, так и в бытовых целях. Для генерации магнитного поля созданы десятки различных устройств, а также используются природные свойства минералов.

Наибольшее распространение среди постоянных получил неодимовый магнит. Его использование и широкое распространение связано как с его стоимостью, так и отличными техническими характеристиками. Его недостатками являются: склонность к коррозии и боязнь высоких температур. По этой причине в сложных условиях работы применяются другие типы, которые не обладают этими ограничениями.

Видео

Уникальные свойства некоторых веществ, всегда удивляли людей своею необычностью. Особое внимание привлекла способность некоторых металлов и камней – отталкиваться или притягиваться друг к другу. На протяжении всех эпох это вызвало интерес мудрецов и огромное удивление простых обывателей.

Начиная с 12 – 13 веков его начали активно применять в производстве компасов и других инновационных изобретений. Сегодня можно увидеть распространённость и разнообразие магнитов во всех сферах нашей жизни. Каждый раз, когда мы встречам очередное изделие из магнита, мы часто задаёмся вопросом: «Так как же делают магниты?»

Виды магнитов

Существует несколько видов магнитов:

  • Постоянный;
  • Временный;
  • Электромагнит;

Отличие первых двух магнитов заключается в их степени намагниченности и времени удержания поля внутри себя. В зависимости от состава, магнитное поле будет слабее или сильнее и более устойчивым к воздействию внешних полей. Электромагнит не является настоящим магнитом, это всего лишь эффект электричества, которое создает магнитное поле вокруг металлического сердечника.

: впервые исследования об этом веществе были произведены нашим отечественным ученым Петром Перегрином. В 1269 году им была выпущена «Книга о магните», в которой описывались уникальные свойства вещества и его взаимодействия с окружающим миром.

Из чего делают магниты?


Для производства постоянных и временных магнитов используют железо, неодим, бор, кобальт, самарий, альнико и ферриты. Они в несколько этапов измельчаются и вместе плавятся, пекутся или спрессовываются до получения постоянного или временного магнитного поля. В зависимости от вида магнитов и требуемых характеристик, меняется состав и пропорции компонентов.

Материалы по теме:

Как и из чего делают конфеты?

Такое производство позволяет получить три вида магнитов:

  • Прессованные;
  • Литые;
  • Спеченные;

Изготовление магнитов

Электромагниты производятся с помощью обмотки проволоки вокруг металлического сердечника. Меняя размеры сердечника и длину проволоки меняют мощность поля, количество употребляемого электричества и размеры устройства.

Выбор компонентов

Постоянные и временные магниты производятся с разной силой полей и устойчивостью к окружающим воздействиям. Перед началом производства, заказчик определяет состав и форму будущих изделий в зависимости от места применения и дороговизны производства. С точностью до грамма подбираются все компоненты и отправляются на первый этап производства.

Человек впервые познакомился с магнитом еще в древности. Однако очень быстро этот естественный камень перестал удовлетворять потребности людей. Именно тогда и была разработана технология изготовления магнитов. Конечно, с тех пор прошло много времени. Технология значительно изменилась, и теперь появилась возможность изготовить магнит в домашних условиях. Для этого не нужно обладать особенными навыками и знаниями. Достаточно иметь под рукой все необходимые материалы и инструменты. Итак, изготовление магнита выглядит следующим образом.

Магнитомягкие материалы

Все материалы, способные к намагничиванию, можно разделить на магнитомягкие и магнитотвердые. Между ними существует значительная разница. Так, магнитомягкие материалы сохраняют магнитные свойства недолго.

Можно провести эксперимент: проведите несколько раз по сильному магниту железным брусочкам. В результате материал приобретет свойства притягивать другие металлические предметы. Однако изготовление обладающего этими способностями, в данном случае невозможно.

Магнитотвердые материалы

Подобные материалы получаются в результате намагничивания обычного куска железа. В данном случае свойства сохраняются значительно дольше. Однако они полностью исчезают при ударе предмета о достаточно твердую поверхность. Также разрушаются, если нагреть материал до 60 градусов.

Что понадобится

В заключение

Изготовление постоянных магнитов в домашних условиях — процесс достаточно простой. Однако при использовании определенных схем следует соблюдать аккуратность.

Самым мощным из постоянных магнитов считается неодимовый. Изготовить его в домашних условиях можно, однако для этого требуется заготовка из редкоземельного металла — неодима. Помимо этого, применяют сплав бора и железа. Такая заготовка намагничивается в магнитном поле. Стоит отметить, что такое изделие обладает огромной силой и теряет только 1 процент своих свойств в течение ста лет.

Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго. Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото – Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.


Фото – Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца . Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото – Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото – Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.


Фото – Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.


Фото – Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.


Фото – Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.


Фото – Принцип работы магнита

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Достоинства:

  1. Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  2. Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  3. Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.

Недостатки:

  1. Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  2. Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  3. Даже после приобретения готового мотора, его бывает очень сложно подключить;
  4. Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.