Виды коррозии – как ржавеет металл? Виды коррозии Виды ржавчины

Классификация видов коррозии

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

  • газовая коррозия;
  • атмосферная коррозия;
  • коррозия в неэлектролитах;
  • коррозия в электролитах ;
  • биокоррозия;
  • коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

  • контактная коррозия;
  • коррозия при неполном погружении;
  • коррозия при полном погружении;
  • коррозия при переменном погружении;
  • коррозия при трении;
  • коррозия под напряжением.

По характеру разрушения:

Главная классификация производится по механизму протекания процесса. Различают два вида:

  • химическую коррозию;
  • электрохимическую коррозию.

Коррозия неметаллических материалов

По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Но следует учитывать, что механизмы и кинетика процессов для неметаллов и металлов будут разными.

Коррозия металлов

Ржавчина, самый распространенный вид коррозии.

Коррозия металла.

Коррозия металлов - разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса - «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, - коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

Типы коррозии

Электрохимическая коррозия

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

Коррозионный элемент

При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO 2 , образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки - цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

Водородная и кислородная коррозия

Если происходит восстановление ионов H 3 O + или молекул воды H 2 O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:

2H 3 O + + 2e − → 2H 2 O + H 2

2H 2 O + 2e − → 2OH − + H 2

Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:

O 2 + 2H 2 O + 4e − → 4OH −

Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.

Химическая коррозия

Химическая коррозия - взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

4Fe + 3O 2 → 2Fe 2 O 3

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

Виды коррозии

  • Газовая коррозия
  • Атмосферная коррозия
  • Коррозия при неполном погружении
  • Коррозия по ватерлинии
  • Коррозия при полном погружении
  • Коррозия при переменном погружении
  • Подземная коррозия
  • Биокоррозия
  • Коррозия внешним током
  • Коррозия блуждающим током
  • Контактная коррозия
  • Коррозия при трении
  • Фреттинг-коррозия
  • Сплошная коррозия
  • Равномерная коррозия
  • Неравномерная коррозия
  • Местная коррозия
  • Подповерхностная коррозия
  • Точечная коррозия
  • Коррозия пятнами
  • Сквозная коррозия
  • Послойная коррозия
  • Нитевидная коррозия
  • Структурная коррозия
  • Межкристаллитная коррозия
  • Избирательная (селективная) коррозия
  • Графитизация чугуна
  • Обесцинкование
  • Щелевая коррозия
  • Ножевая коррозия
  • Коррозионная язва
  • Коррозионное растрескивание
  • Коррозия под напряжением
  • Коррозионная усталость
  • Предел коррозионной усталости
  • Коррозионная хрупкость

Борьба с коррозией

Коррозия приводит ежегодно к миллиардным убыткам, и разрешение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа­лов и способом их нанесения. . Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка .

Обычно выделяют три направления методов защиты от коррозии:

  1. Конструкционный
  2. Активный
  3. Пассивный

Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали , кортеновские стали , цветные металлы . При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя . Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод - использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

В качестве защиты от коррозии может применяться нанесение какого-либо покрытия , которое препятствует образованию коррозионного элемента (пассивный метод).

Кислородная коррозия оцинкованного железа

Кислородная коррозия железа, покрытого оловом

Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и корродирует первым. Ионы Zn 2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова корродировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии - применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния. Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.

Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее корродируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование). При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали - более 12 процентов.

Система холодного цинкования

Система холодного цинкования предназначена для усиления антикоррозионных свойств комплексного многослойного покрытия. Система обеспечивает полную катодную (или гальваническую) защиту железных поверхностей от коррозии в различных агрессивных средах

Система холодной оцинковки бывает одно-, двух- или трехупаковочной и включает:

  • связующее - известны составы на хлоркаучуковой, этилсиликатной, полистирольной, эпоксидной, уретановой, алкидной (модифицированной) основе;
  • антикоррозионный наполнитель - цинковый порошок («цинковая пыль»), с содержанием более 95 % металлического цинка, имеющего размер частиц менее 10 мкм и минимальную степень окисления.;
  • отвердитель (в двух- и трех- упаковочных системах)

Одноупаковочные системы холодного цинкования поставляются готовыми к применению и требуют лишь тщательного перемешивания состава перед нанесением. Двух- и трехупаковочные системы могут поставляться в нескольких упаковках и требуют дополнительных операций по приготовлению состава перед нанесением (смешивание связующего, наполнителя, отвердителя).

После приготовления (двух- и трёхупаковочные системы), нанесения состава на защищаемую поверхность металла кистью, валиком, методом пневматического или безвоздушного распыления и высыхания на поверхности металла образуется цинкнаполненное противокоррозионное покрытие - полимерно-цинковая плёнка, сохраняющая все свойства полимерного покрытия, которое использовалось в качестве связующего, и одновременно обладающая всеми защитными достоинствами обычного цинкового покрытия.

Преимущества системы холодной оцинковки по сравнению со способом горячей гальванизации:

  1. Простота и меньшая трудоёмкость технологии нанесения защитного цинкового покрытия. Для нанесения покрытия не требуется специальное оборудование.
  2. Возможность антикоррозионной защиты металлоконструкций любых размеров, как в заводских так и в полевых условиях.
  3. Возможность исправления непосредственно на месте абразивных повреждений покрытия и дефектов, возникающих при сварке металлоконструкций.
  4. Экологически чистый процесс нанесения покрытия: нет необходимости производить работы в горячем цеху.
  5. Создание на поверхности железа гибкого слоя цинка (не образующего микротрещин при изгибании металлоизделия).

Система холодного цинкования применяется во всех видах промышленности и в быту, где требуется надёжная и долговечная защита железных поверхностей от коррозии.

Помимо использования в качестве грунтовочного слоя в комплексном многослойном покрытии система холодной оцинковки может применяться как самостоятельное антикоррозийное покрытие металлических поверхностей.

Газотермическое напыление

Для борьбы с коррозией используют также методы газотермического напыления .
С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до нефтедобывающих компаний .

Термодиффузионное цинковое покрытие

(ГОСТ 9.316-2006). Для эксплуатации металлоизделий в агрессивных средах, необходима более стойкая антикоррозионная защита поверхности металлоизделий. Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллитных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий.

Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375-850 °C), или с использованием разрежения (вакуума) - при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01-1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 - 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий, при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.

Цинкование

Цинкование - это процесс нанесения цинка или его сплава на металлическое изделие для придания его поверхности определённых физико-химических свойств, в первую очередь высокого сопротивления коррозии. Цинкование - наиболее распространённый и экономичный процесс металлизации, применяемый для защиты железа и его сплавов от атмосферной коррозии. На эти цели расходуется примерно 40 % мировой добычи цинка. Толщина покрытия должна быть тем больше, чем агрессивнее окружающая среда и чем длительнее предполагаемый срок эксплуатации. Цинкованию подвергаются стальные листы, лента, проволока, крепёжные детали , детали машин и приборов, трубопроводы и др. металлоконструкции. Декоративного назначения цинковое покрытие обычно не имеет; некоторое улучшение товарный вид приобретает после пассивирования оцинкованных изделий в хроматных, или фосфатных растворах, придающих покрытиям радужную окраску. Наиболее широко используется оцинкованная полоса, изготовляемая на автоматизированных линиях горячего цинкования , то есть методом погружения в расплавленный цинк. Методы распыления и металлизация позволяют покрывать изделия любого размера (например, мачты электропередач, резервуары, мостовые металлоконструкции, дорожные ограждения). Электролитическое цинкование ведётся в основном из кислых и щёлочно-цианистых электролитов; специальные добавки позволяют получать блестящие покрытия.

Экономический ущерб от коррозии

Экономические потери от коррозии металлов огромны. В США по последним данным NACE ущерб от коррозии и затраты на борьбу с ней составили 3,1 % от ВВП (276 млрд долларов). В Германии этот ущерб составил 2,8 % от ВВП. По оценкам специалистов различных стран эти потери в промышленно развитых странах составляют от 2 до 4 % валового национального продукта. При этом потери металла, включающие массу вышедших из строя металлических конструкций, изделий, оборудования, составляют от 10 до 20 % годового производства стали.

Обрушение Серебряного моста.

Ржавчина является одной из наиболее распространенных причин аварий мостов . Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к друга конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году , когда подшипники подъёмного механизма проржавели внутри. Три водителя погибли при падении в реку. Исследования показали, что сток дороги был перекрыт и не был почищен, а сточные воды проникли в опоры моста. 15 декабря 1967 года Серебряный мост, соединяющий Поинт Плезант, штат Западная Виржиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. Сорок шесть человек погибли, и девять серьёзно пострадали. Помимо человеческих жертв и травм, был разрушен основной транспортный путь между Западной Виржинией и Огайо. Причиной обрушения стала коррозия.

Мост Кинзу в Пенсильвании был разрушен в 2003 торнадо прежде всего потому, что центральные основные болты проржавели, существенно снизив его устойчивость.

См. также

Примечания

Ссылки

  • «Бластинг: Гид по высокоэффективной абразивоструйной очистке» - Екатеринбург: ООО "ИД «Оригами», 2007-216 с., ISBN 978-5-9901098-1-0

Коррозия металлов (от позднелат. corrosio — разъедание) — физико-химическое взаимодействие металлического материала и среды, приводящее к ухудшению эксплуатационных свойств материала, среды или технической системы, частями которой они являются.

В основе коррозии металлов лежит химическая реакция между материалом и средой или между их компонентами, протекающая на границе раздела фаз. Это процесс является самопроизвольным, а также является следствием окислительно-восстановительных реакций с компонентами окружающей среды. Химические вещества, разрушающие строительные материалы, называются агрессивными. Агрессивной средой может служить атмосферный воздух, вода, различные растворы химических веществ, газы. Процесс разрушения материала усиливается при наличии в воде даже незначительного количества кислот или солей, в почвах при наличии в почвенной воде солей и колебаниях уровня грунтовых вод.

Коррозионные процессы классифицируют:

1) по условиям протекания коррозии,

2) по механизму процесса,

3) по характеру коррозионного разрушения.

По условиям протекания коррозии , которые весьма разнообразны, различают несколько видов коррозии.

Коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы. Так, выделяют газовую коррозию , т. е. химическую коррозию под действием горячих газов (при температуре много выше точки росы).

Характерны некоторые случаи электрохимической коррозии (преимущественно с катодным восстановлением кислорода) в природных средах: атмосферная - в чистом или загрязнённом воздухе при влажности, достаточной для образования на поверхности металла плёнки электролита (особенно в присутствии агрессивных газов, например СО 2 , Cl 2 , или аэрозолей кислот, солей и т. п.); морская - под действием морской воды и подземная - в грунтах и почвах.

Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д.

При знакопеременных нагрузках может проявляться коррозионная усталость , выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении ) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.).

Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг- коррозию , наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозию блуждающим током ). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, - контактная коррозия .

В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия , при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

Принято выделять также биологическую коррозию , идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию - при воздействии радиоактивного излучения.

1 . Газовая коррозия - коррозия металлов в газах при высоких температурах (например, окисление и обезуглероживание стали при нагревании);

2. Атмосферная коррозия - коррозия металлов в атмосфере воздуха, а также любого влажного газа (например, ржавление стальных конструкций в цехе или на открытом воздухе);

Атмосферная коррозия является самым распространенным видом коррозии; около 80% металлоконструкций эксплуатируется в атмосферных условиях.
Основным фактором, определяющим механизм и скорость атмосферной коррозии, является степень увлажнения поверхности металла. По степени увлажнения различают три основных типа атмосферной коррозии:

  • Мокрая атмосферная коррозия – коррозия при наличии на поверхности металла видимой пленки воды (толщина пленки от 1мкм до 1 мм). Коррозия этого типа наблюдается при относительной влажности воздуха около 100%, когда имеет место капельная конденсация воды на поверхности металла, а также при непосредственном попадании воды на поверхность (дождь, гидроочистка поверхности и т. п.);
  • Влажная атмосферная коррозия – коррозия при наличии на поверхности металла тонкой невидимой пленки воды, которая образуется в результате каппилярной, адсорбционной или химической конденсации при относительной влажности воздуха ниже 100% (толщина пленки от 10 до 1000 нм);
  • Сухая атмосферная коррозия – коррозия при наличии на поверхности металла очень тонкой адсорбционной пленки воды (порядка нескольких молекулярных слоев общей толщиной от 1 до 10 нм), которую еще нельзя рассматривать, как сплошную и обладающую свойствами электролита.

Очевидно, что минимальные сроки коррозии имеют место при сухой атмосферной коррозии, которая протекает по механизму химической коррозии.

С увеличением толщины пленки воды происходит переход механизма коррозии от химического к электрохимическому, что соответствует быстрому возрастанию скорости коррозионного процесса.

Из приведенной зависимости видно, что максимуму скорости коррозии отвечает граница областей II и III, затем наблюдается некоторое замедление коррозии вследствие затруднения диффузии кислорода через утолщенный слой воды. Еще более толстые слои воды на поверхности металла (участок IV) приводят лишь к незначительному замедлению коррозии, так как в меньшей степени будут влиять на диффузию кислорода.

На практике не всегда можно так отчетливо разграничить эти три этапа атмосферной коррозии, так как в зависимости от внешних условий возможен переход от одного типа к другому. Так, например, металлоконструкция, которая корродировала по механизму сухой коррозии, при увеличении влажности воздуха начнет коррозировать по механизму влажной коррозии, а при выпадении осадков уже будет иметь место мокрая коррозия. При высыхании влаги процесс будет изменяться в обратном направлении.

На скорость атмосферной коррозии металлов оказывает влияние ряд факторов. Основным из них следует считать длительность увлажнения поверхности, которая определяется главным образом величиной относительной влажности воздуха. При этом в большинстве практических случаев скорость коррозии металла резко увеличивается только при достижении некоторой определенной критической величины относительной влажности, при которой появляется сплошная пленка влаги на поверхности металла в результате конденсации воды из воздуха.

Влияние относительной влажности воздуха на скорость атмосферной коррозии углеродистой стали показано на рисунке Зависимость увеличения массы продуктов коррозии m от относительной влажности воздуха W получена при экспозиции стальных образцов в атмосфере, содержащей 0,01% SO 2 , в течении 55 суток.

Очень сильно влияют на скорость атмосферной коррозии содержащиеся в воздухе примеси SO 2 , H 2 S, NH 3 , HCl и др. Растворяясь в пленке воды, они увеличивают ее электропроводность и

Твердые частицы из атмосферы, попадающие на поверхность металла, могут, растворяясь, действовать как вредные примеси (NaCl, Na 2 SO 4), либо в виде твердых частиц облегчать конденсацию влаги на поверхности (частицы угля, пыль, частицы абразива и т.п.).

На практике трудно выявить влияние отдельных факторов на скорость коррозии металла в конкретных условиях эксплуатации, но можно приблизительно оценить ее, исходя из обобщенных характеристик атмосферы (оценка дается в относительных единицах):

сухая континентальная — 1-9
морская чистая — 38
морская индустриальная — 50
индустриальная — 65
индустриальная, сильно загрязненная – 100.

3 . Жидкостная коррозия - коррозия металлов в жидкой среде: в неэлектролите (бром, расплавленная сера, органический растворитель, жидкое топливо) и в электролите (кислотная, щелочная, солевая, морская, речная коррозия, коррозия в расплавленных солях и щелочах). В зависимости от условий взаимодействия среды с металлом различают жидкостную коррозию металла при полном, неполном и переменном погружении, коррозию по ватерлинии (вблизи границы между погруженной и непогруженной в коррозионную среду частью металла), коррозию в неперемешиваемой (спокойной) и перемешиваемой (движущейся) коррозионной среде;

Жидкостная коррозия

4. Подземная коррозия - коррозию металлов в почвах и грунтах (например, ржавление подземных стальных трубопроводов);

Подземная коррозия

По своему механизму является электрохим. коррозией металлов. подземная коррозия обусловлена тремя факторами: коррозионной агрессивностью почв и грунтов (почвенная коррозия), действием блуждающих токов и жизнедеятельностью микроорганизмов.

Коррозионная агрессивность почв и грунтов определяется их структурой, грану-лометрич. составом, уд. электрич. сопротивлением, влажностью, воздухопроницаемостью, рН и др. Обычно коррозионную агрессивность грунта по отношению к углеродистым сталям оценивают по уд. электрич. сопротивлению грунта, средней плотности катодного тока при смещении электродного потенциала на 100 мВ отрицательнее коррозионного потенциала стали; по отношению к алюминию коррозионная активность грунта оценивается содержанием в нем ионов хлора, железа, значением рН, по отношению к свинцу-содержанием нитрат-ионов, гумуса, значением рН.

5. Биокоррозия - коррозия металлов под влиянием жизнедеятельности микроорганизмов (например, усиление коррозии стали в грунтах сульфат-редуцирующими бактериями);

Биокоррозия

Биокоррозия подземных сооружений обусловлена в осн. жизнедеятельностью сульфатвосстанавливающих, сероокис-ляющих и железоокисляющих бактерий, наличие к-рых устанавливают бактериологич. исследованиями проб грунта. Сульфатвосстанавливающие бактерии присутствуют во всех грунтах, но с заметной скоростью биокоррозия протекает только тогда, когда воды (или грунты) содержат 105-106 жизнеспособных бактерий в 1 мл (или в 1 г).

6. С труктурная коррозия - коррозия, связанную со структурной неоднородностью металла (например, ускорение коррозионного процесса в растворах H 2 S0 4 или НСl катодными включениями: карбидами в стали, графитом в чугуне, интерметаллидом СuА1 3 в дюралюминии);

Структурная коррозия

7. Коррозия внешним током - электрохимическая коррозия металлов под воздействием тока от внешнего источника (например, растворение стального анодного заземления станции катодной защиты подземного трубопровода);

Коррозия внешним током

8. Коррозия блуждающим током - электрохимическая коррозия металла (например, подземного трубопровода) под воздействием блуждающего тока;

Основные источники блуждающих токов в земле -электрифи-цир. железные дороги постоянного тока, трамвай, метрополитен, шахтный электротранспорт, линии электропередач постоянного тока по системе провод — земля. Наибольшие разрушения блуждающие токи вызывают в тех местах подземного сооружения, где ток стекает с сооружения в землю (т. наз. анодные зоны).Потери железа от коррозии блуждающими токами составляют 9,1 кг/А·год.

На подземные металлич. сооружения могут натекать токи порядка сотен ампер и при наличии повреждений в защитном покрытии плотность тока, стекающего с сооружения в анодной зоне, настолько велика, что за короткий период в стенках сооружения образуются сквозные повреждения. Поэтому при наличии анодных или знакопеременных зон на подземных металлич. сооружениях коррозия блуждающими токами обычно опаснее почвенной коррозии.

9. Контактная коррозия - электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите (например, коррозия в морской воде деталей из алюминиевых сплавов, находящихся в контакте с медными деталями).

Контактная коррозия

Контактная коррозия в электролитах с высокой электропроводностью может возникать в следующих частных случаях:

    при контакте низколегированной стали различных марок, если одна из них легирована медью и (или) никелем;

    при введении этих элементов в сварные швы в процессе сварки стали, не легированной этими элементами;

    при воздействии на конструкции из стали, не легированной медью и никелем, а также из оцинкованной стали или из алюминиевых сплавов, пыли, содержащей тяжелые металлы или их оксиды, гидрооксиды, соли; перечисленные материалы являются катодами по отношению к стали, алюминию, металлическим защитным покрытиям;

    при попадании на конструкции из перечисленных материалов потеков воды с корродирующих медных деталей;

    при попадании на поверхность конструкций из оцинкованной стали или алюминиевых сплавов графитовой либо железорудной пыли, коксовой крошки;

    при контакте алюминиевых сплавов между собой, если один сплав (катодный) легирован медью, а другой (анодный) ¾ нет;

10. щелевая коррозия - усиление коррозии в щелях и зазорах между металлами (например, в резьбовых и фланцевых соединениях стальных конструкций, находящихся в воде), а также в местах неплотного контакта металла с неметаллическим коррозионноинертным материалом. Присуща конструкциям из нержавеющей стали в агрессивных жидких средах, в которых материалы вне узких щелей и зазоров устойчивы благодаря пассивному состоянию т.е. вследствие образования на их поверхности защитной пленки;

11. Коррозия под напряжением - коррозия металлов при одновременном воздействии коррозионной среды и механических напряжений. В зависимости от характера нагрузок может быть коррозия при постоянной нагрузке (например, коррозия металла паровых котлов) и коррозия при переменной нагрузке (например, коррозия осей и штоков насосов, рессор, стальных канатов); одновременное воздействие коррозионной среды и знакопеременных или циклических растягивающих нагрузок часто вызывает коррозионную усталость - понижение предела усталости металла;

Коррозия под напряжением

12. Коррозионная кавитация - разрушение металла, вызванное одновременным коррозионным и ударным воздействием внешней среды (например, разрушение лопастей гребных винтов морских судов);

Коррозионная кавитация

Кавитация - (от лат. cavitas - пустота) - образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить при увеличении её скорости (гидродинамическая кавитация). Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырек захлопывается, излучая при этом ударную волну.

Кавитация во многих случаях нежелательна. На устройствах, например, винтах и насосах, кавитация вызывает много шума, повреждает их составные части, вызывает вибрации и снижение эффективности.

Когда разрушаются кавитационные пузыри, энергия жидкости сосредотачивается в очень небольших объемах. Тем самым, образуются места повышенной температуры и возникают ударные волны, которые являются источниками шума. При разрушении каверн освобождается много энергии, что может вызвать основные повреждения. Кавитация может разрушить практически любое вещество. Последствия, вызванные разрушением каверн, ведут к большому износу составных частей и могут значительно сократить срок службы винта и насоса.

Для предотвращения кавитации

  • подбирают устойчивый к данному виду эрозии материал (молибденовые стали);
  • уменьшают шероховатость поверхности;
  • снижают турбулентность потока, уменьшают количество поворотов, делают их более плавными;
  • не допускают прямого удара эрозийной струи в стенку аппарата, применяя отражатели, рассекатели струй;
  • очищают газы и жидкости от твердых примесей;
  • не допускают работу гидравлических машин в режиме кавитации;
  • ведут систематический контроль за износом материала.

13. коррозия при трении (коррозионная эрозия) - разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения (например, разрушение шейки вала при трении о подшипник омываемый морской водой);

14. Фреттинг-коррозия - коррозия металлов при колебательном перемещение двух поверхностей относительно друг друга в условиях воздействия коррозионной среды (например, разрушение двух поверхностей металлических деталей машины, плотно соединенных болтами, в результате вибрации в окислительной атмосфере, содержащей кислород).

Фреттинг-коррозия

По механизму процесса различают химическую и электрохимическую коррозию металлов:

1. химическая коррозия - взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Примерами такого типа коррозии являются реакции, протекающие при соприкосновении металлоконструкций с кислородом или другими окисляющими газами при высокой температуре (свыше 100°С):

2 Fe + O 2 = FeO;

4FeO + 3O 2 = 2Fe 2 O 3 .

Если в результате химической коррозии образуется сплошная оксидная пленка, имеющая достаточно прочную адгезию с поверхностью металлоконструкции, то доступ кислорода к металлу затрудняется, коррозия замедляется, а затем прекращается. Пористая, плохо сцепленная с поверхностью конструкции оксидная пленка не защищает металл от коррозии. Когда объем оксида больше объема вступившего в реакцию окисления металла и оксид имеет достаточную адгезию с поверхностью металлоконструкции, такая пленка хорошо защищает металл от дальнейшего разрушения. Толщина защитной пленки оксида колеблется от нескольких молекулярных слоев (5-10)х10 –5 мм до нескольких микронов.

Окисление материала металлоконструкций, соприкасающихся с газовой средой, происходит в котлах, дымовых трубах котельных, водонагревателях, работающих на газовом топливе, теплообменниках, работающих на жидком и твердом топливе. Если бы газообразная среда не содержала диоксида серы или других агрессивных примесей, а взаимодействие металлоконструкций со средой происходило при постоянной температуре по всей плоскости конструкции, то относительно толстая оксидная пленка служила бы достаточно надежной защитой от дальнейшей коррозии. Но в связи с тем, что тепловое расширение металла и оксида различно, оксидная пленка отслаивается местами, что создает условия для дальнейшей коррозии.

Газовая коррозия стальных конструкций может протекать вследствие не только окислительных, но и восстановительных процессов. При сильном нагреве стальных конструкций под высоким давлением в среде, содержащей водород, последний диффундирует в объем стали и разрушает материал по двойному механизму – обезуглероживания вследствие взаимодействия водорода с углеродом

Fe 3 OC + 2H 2 = 3Fe + CH 4 O

и придания стали свойств хрупкости вследствие растворения в ней водорода – «водородная хрупкость».

2. Электрохимическая коррозия - взаимодействие металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном, акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

При контакте с воздухом на поверхности конструкции появляется тонкая пленка влаги, в которой растворяются примеси, находящиеся в воздухе, например диоксид углерода. При этом образуются растворы, способствующие электрохимической коррозии. Различные участки поверхности любого металла обладают разными потенциалами.

Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия – явление сложное, состоящее из нескольких элементарных процессов. На анодных участках протекает анодный процесс – в раствор переходят ионы металла (Ме), а избыточные электроны (е), оставаясь в металле, движутся к катодному участку. На катодных участках поверхности металла избыточные электроны поглощаются ионами, атомами или молекулами электролита (деполяризаторами), которые восстанавливаются:

е + Д → [Де],

где Д – деполяризатор; е – электрон.

Интенсивность коррозионного электрохимического процесса зависит от скорости анодной реакции, при которой ион металла переходит из кристаллической решетки в раствор электролита, и катодной, заключающейся в ассимиляции освобождающихся при анодной реакции электронов.

Возможность перехода иона металла в электролит определяется силой связи с электронами в междоузлиях кристаллической решетки. Чем сильнее связь между электронами и атомами, тем труднее переход иона металла в электролит. В электролитах имеются положительно заряженные частицы – катионы и отрицательно заряженные – анионы. Анионы и катионы присоединяют к себе молекулы воды.

Структура молекул воды обусловливает ее полярность. Между заряженными ионами и полярными молекулами воды возникает электростатическое взаимодействие, вследствие которого полярные молекулы воды определенным образом ориентируются вокруг анионов и катионов.

При переходе ионов металлов из кристаллической решетки в раствор электролита освобождается эквивалентное число электронов. Таким образом на границе «металл – электролит» образуется двойной электрический слой, в котором металл заряжен отрицательно, электролит – положительно; возникает скачок потенциала.

Способность ионов металла переходить в раствор электролита характеризуется электродным потенциалом, который представляет собой энергетическую характеристику двойного электрического слоя.

Когда этот слой достигает разности потенциалов, переход ионов в раствор прекращается (наступает равновесное состояние).

Коррозионная диаграмма: К, К’ - катодные поляризационные кривые; А, A’ - анодные поляризационные кривые.

По характеру коррозионного разрушения различают следующие виды коррозии:

1. сплошную, или общую коррозию , охватывающую всю поверхность металла, находящуюся под воздействием данной коррозионной среды. Сплошная коррозия характерна для стали, алюминия, цинковых и алюминиевых защитных покрытий в любых средах, в которых коррозионная стойкость данного материала или металла покрытия недостаточно высока.

Этот вид коррозии характеризуется относительно равномерным по всей поверхности постепенным проникновением в глубь металла, т. е. уменьшением толщины сечения элемента или толщины защитного металлического покрытия.

При коррозии в нейтральных, слабощелочных и слабокислых средах элементы конструкций покрываются видимым слоем продуктов коррозии, после механического удаления которого до чистого металла поверхность конструкций оказывается шероховатой, но без очевидных язв, точек коррозии и трещин; при коррозии в кислых (а для цинка и алюминия и в щелочных) средах видимый слой продуктов коррозии может не образоваться.

Наиболее подверженными этому виду коррозии участками, как правило, являются узкие щели, зазоры, поверхности под головками болтов, гайками, другие участки скопления пыли, влаги по той причине, что на этих участках фактическая продолжительность коррозии больше, чем на открытых поверхностях.

Сплошная коррозия бывает:

* равномерной, которая протекает с одинаковой скоростью по всей поверхности металла (например, коррозия углеродистой стали в растворах H 2 S0 4);

* неравномерной, которая протекает с неодинаковой скоростью на различных участках поверхности металла (например, коррозия углеродистой стали в морской воде);

* избирательной, при которой разрушается одна структурная составляющая сплава (графитизация чугуна) или один компонент сплава (обесцинкование латуней).

2. местную коррозию, охватывающую отдельные участки поверхности металла.

Местная коррозия бывает:

* коррозия пятнами характерна для алюминия, алюминиевых и цинковых покрытий в средах, в которых их коррозионная стойкость близка к оптимальной, и лишь случайные факторы могут вызвать местное нарушение состояния устойчивости материала.

Этот вид коррозии характеризуется небольшой глубиной проникновения коррозии по сравнению с поперечными (в поверхности) размерами коррозионных поражений. Пораженные участки покрываются продуктами коррозии как и при сплошной коррозии. При выявлении этого вида коррозии необходимо установить причины и источники временных местных повышений агрессивности среды за счет попадания на поверхность конструкции жидких сред (конденсата, атмосферной влаги при протечках и т. п.), локального накопления или отложения солей, пыли и т. д.

* коррозия язвами характерна в основном для углеродистой и низкоуглеродистой стали (в меньшей степени - для алюминия, алюминиевых и цинковых покрытий) при эксплуатации конструкций в жидких средах и грунтах.

Язвенная коррозия низколегированной стали в атмосферных условиях чаще всего связана с неблагоприятной структурой металла, т. е. с повышенным количеством неметаллических включений, в первую очередь сульфидов с высоким содержанием марганца.

Язвенная коррозия характеризуется появлением на поверхности конструкции отдельных или множественных повреждений, глубина и поперечные размеры которых (от долей миллиметра до нескольких миллиметров) соизмеримы.

Обычно сопровождается, образованием толстых слоев продуктов коррозии, покрывающих всю поверхность металла или значительные ее участки вокруг отдельных крупных язв (характерно для коррозии незащищенных стальных конструкций в грунтах). Язвенная коррозия листовых конструкций, а также элементов конструкций из тонкостенных труб и прямоугольных элементов замкнутого сечения со временем переходит в сквозную с образованием отверстий в стенках толщиной до нескольких миллиметров.

Язвы являются острыми концентраторами напряжений и могут оказаться инициаторами зарождения усталостных трещин и хрупких разрушений. Для оценки скорости язвенной коррозии и прогнозирования ее развития в последующий период определяют средние скорости проникновения коррозии в наиболее глубоких язвах и количество язв на единицу поверхности. Эти данные в дальнейшем следует использовать при расчете несущей способности элементов конструкций.

* точечная (питтинговая) коррозия характерна для алюминиевых сплавов, в том числе анодированных, и нержавеющей стали. Низколегированная сталь подвергается коррозии этого вида крайне редко.

Практически обязательным условием развития питтинговой коррозии является воздействие хлоридов, которые могут попадать на поверхность конструкций на любой стадии, начиная от металлургического производства (травление проката) до эксплуатации (в виде солей, аэрозолей, пыли).

При обнаружении питтинговой коррозии необходимо выявить источники хлоридов и возможности исключения их воздействия на металл. Питтинговая коррозия представляет собой разрушение в виде отдельных мелких (не более 1 - 2 мм в диаметре) и глубоких (глубина больше поперечных размеров) язвочек.

* сквозная коррозия , которая вызывает разрушение металла насквозь (например, при точечной или язвенной коррозии листового металла);

* нитевидная коррозия , распространяющаяся в виде нитей преимущественно под неметаллическими защитными покрытиями (например, на углеродистой стали под пленкой лака);

* подповерхностная коррозия , начинающаяся с поверхности, но преимущественно распространяющейся под поверхностью металла таким образом, что разрушение и продукты коррозии оказываются сосредоточенными в некоторых областях внутри металла; подповерхностная коррозия часто вызывает вспучивание металла и его расслоение (например, образование пузырей на поверхности
недоброкачественного прокатанного листового металла при коррозии или травлении);

* межкристаллитная коррозия характерна для нержавеющей стали и упрочненных алюминиевых сплавов, особенно на участках сварки, и характеризуется относительно равномерным распределением множественных трещин на больших участках поверхности конструкций. Глубина трещин, обычно меньше, чем их размеры на поверхности. На каждом участке развития, этого вида коррозии трещины практически одновременно зарождаются от многих источников, связь которых с внутренними или рабочими напряжениями, не является обязательной. Под оптическим микроскопом на поперечных шлифах, изготавливаемых из отобранных проб, видно, что трещины распространяются только по границам зерен металла. Отдельные зерна и блоки могут выкрошиваться, в результате чего образуются язвы и поверхностное шелушение. Этот вид коррозии ведет к быстрой потере металлом прочности и пластичности;

* ножевая коррозия - локализованная коррозия металла, имеющая вид надреза ножом в зоне сплавления сварных соединений в сильно агрессивных средах (например, случаи коррозии сварных швов хромоникелевой стали Х18Н10 с повышенным содержанием углерода в крепкой HN0 3).

* коррозионное растрескивание — вид квазихрупкого разрушения стали и высокопрочных алюминиевых сплавов при одновременном воздействии статических напряжений растяжения и агрессивных сред; характеризуется образованием единичных и множественных трещин, связанных с концентрацией основных рабочих и внутренних напряжений. Трещины могут распространяться между кристаллами или по телу зерен, но с большей скоростью в плоскости, нормальной к действующим напряжениям, чем в плоскости поверхности.

Углеродистая и низколегированная сталь обычной и повышенной прочности подвергается этому виду коррозии в ограниченном количестве сред: горячих растворах щелочей и нитратов, смесях СО - СО 2 - Н 2 - Н 2 О и в средах, содержащих аммиак или сероводород. Коррозионное растрескивание высокопрочной стали, например высокопрочных болтов, и высокопрочных алюминиевых сплавов может развиваться в атмосферных условиях и в различных жидких средах.

При установлении факта поражения конструкции коррозионным растрескиванием необходимо убедиться в отсутствии признаков других форм квазихрупкого разрушения (хладноломкости, усталости).

* коррозионная хрупкость , приобретенная металлом в результате коррозии (например, водородное охрупчивание труб из высокопрочных сталей в условиях сероводородных нефтяных скважин); под хрупкостью следует понимать свойство материала разрушаться без заметного поглощения механической энергии в необратимой форме.

Количественная оценка коррозии. Скорость общей коррозии оценивают по убыли металла с единицы площади коррозии, например в г/м 2 ч, или по скорости проникновения коррозии, т. е. по одностороннему уменьшению толщины нетронутого металла (П ), например в мм/год.

При равномерной коррозии П = 8,75К/ρ , где ρ - плотность металла в г/см 3 . При неравномерной и местной коррозии оценивается максимальное проникновение. По ГОСТу 13819-68 установлена 10-балльная шкала общей коррозионной стойкости (см. табл.). В особых случаях К. может оцениваться и по др. показателям (потеря механической прочности и пластичности, рост электрического сопротивления, уменьшение отражательной способности и т. д.), которые выбираются в соответствии с видом К. и назначением изделия или конструкции.

10-балльная шкала для оценки общей коррозионной стойкости металлов

Группа стойкости

Скорость коррозии металла,

мм/год.

Балл

Совершенно стойкие

|Менее 0,001

1

Весьма стойкие

Свыше 0,001 до 0,005

2

Свыше 0,005 до 0,01

3

Стойкие

Свыше 0,01 до 0,05

4

Свыше 0,05 до 0,1

5

Пониженно-стойкие

Свыше 0,1 до 0,5

6

Свыше 0,5 до 1,0

7

Малостойкие

Свыше 1,0 до 5,0

8

Свыше 5,0 до 10,0

9

Нестойкие

Свыше 10,0

10

При подборе материалов, стойких к воздействию различных агрессивных сред в тех или иных конкретных условиях, пользуются справочными таблицами коррозионной и химической стойкости материалов или проводят лабораторные и натурные (непосредственно на месте и в условиях будущего применения) коррозионные испытания образцов, а также целых полупромышленных узлов и аппаратов. Испытания в условиях, более жёстких, чем эксплуатационные, называют ускоренными.

Применение различных методов защиты металлов от коррозии позволяет в какой-то степени свести к минимуму потери металла от коррозии. В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.

1) Обработка внешней среды, в которой протекает коррозия . Сущность метода заключается либо в удалении из окружающей среды тех веществ, которые выполняют роль деполяризатора, либо в изоляции металла от деполяризатора. Например, для удаления из воды кислорода используют специальные вещества или кипячение.

Удаление кислорода из коррозионной среды называется деаэрацией . Максимально замедлить процесс коррозии можно путем введения в окружающую среду специальных веществ – ингибиторов . Широкое распространение получили летучие и парофазные ингибиторы, которые защищают от атмосферной коррозии изделия из черных и цветных металлов при хранении, транспортировке и т.д.

Ингибиторы применяются при очистке паровых котлов от накипи, для снятия окалины с отработанных деталей, а также при хранении и перевозке соляной кислоты в стальной таре. В качестве органических ингибиторов применяют тиомочевину (химическое название — сульфид-диамид углерода C(NH 2) 2 S), диэтиламин, уротропин (CH 2) 6 N 4) и другие производные аминов.

В качестве неорганических ингибиторов применяют силикаты (соединения металла с кремнием Si), нитриты (соединения с азотом N), дихроматы щелочных металлов и т.д. Механизм действия ингибиторов заключается в том, что их молекулы адсорбируются на поверхности металла, препятствуя протеканию электродных процессов.

2) Защитные покрытия . Для изоляции металла от окружающей среды на него наносят различного рода покрытия: лаки, краски, металлические покрытия. Наиболее распространенными являются лакокрасочные покрытия, однако их механические свойства значительно ниже, чем у металлических. Последние по характеру защитного действия можно разделить на анодные и катодные.

Анодные покрытия . Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии разрушаться будет покрытие, т.к. оно будет выполнять роль анода. Примером анодного покрытия может служить хром, нанесенный на железо.

Катодные покрытия . У катодного покрытия стандартный электродный потенциал более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо).

Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

3) Электрохимическая защита . Различают два вида электрохимической защиты: катодная и протекторная. В обоих случаях создаются условия для возникновения на защищаемом металле высокого электроотрицательного потенциала.

Протекторная защита . Защищаемое от коррозии изделие соединяют с металлическим ломом из более электроотрицательного металла (протектора). Это равносильно созданию гальванического элемента, в котором протектор является анодом и будет разрушаться. Например, для защиты подземных сооружений (трубопроводов) на некотором расстоянии от них закапывают металлолом (протектор), присоединив его к сооружению.

Катодная защита отличается от протекторной тем, что защищаемая конструкция, находящаяся в электролите (почвенная вода), присоединяется к катоду внешнего источника тока. В ту же среду помещают кусок металлолома, который соединяют с анодом внешнего источника тока. Металлический лом подвергается разрушению, предохраняя тем самым от разрушения защищаемую конструкцию.

Во многих случаях металл предохраняет от коррозии образующаяся на его поверхности стойкая оксидная пленка (так, на поверхности алюминия образуется Al 2 O 3 , препятствующий дальнейшему окислению металла). Однако некоторые ионы, например Cl – , разрушают такие пленки и тем самым усиливают коррозию.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в результате коррозии трубопроводов, деталей машин, судов, мостов, морских конструкций и технологического оборудования.

Коррозия приводит к уменьшению надежности работы оборудования: аппаратов высокого давления, паровых котлов, мета ллических контейнеров для токсичных и радиоактивных веществ, лопастей и роторов турбин, деталей самолетов и т.д. С учетом возможной коррозии приходится завышать прочность этих изделий, а значит, увеличивать расход металла, что приводит к дополнительным экономическим затратам. Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции (утечка нефти, газов, воды), к энергетическим затратам для преодоления дополнительных сопротивлений, вызванных уменьшением проходных сечений трубопроводов из-за отложения ржавчины и других продуктов коррозии. Коррозия также приводит к загрязнению продукции, а значит, и к снижению ее качества.

Затраты на возмещение потерь, связанных с коррозией, исчисляются миллиардами рублей в год. Специалисты подсчитали, что в развитых странах стоимость потерь, связанных с коррозией, составляет 3…4% валового национального дохода.

За долгий период интенсивной работы металлургической промышленности выплавлено огромное количество металла и переведено в изделия. Этот металл постоянно корродирует. Сложилась такая ситуация, что потери металла от коррозии в мире уже составляют около 30% от его годового производства. Считается, что 10% прокорродировавшего металла теряется (в основном в виде ржавчины) безвозвратно. Возможно, в будущем установится баланс, при котором от коррозии будет теряться примерно столько же металла, сколько его будет выплавляться вновь. Из всего сказанного следует, что важнейшей проблемой является изыскание новых и совершенствование старых способов защиты от коррозии.

Список литературы

    Козловский А.С. Кровельные работы. – М.: «Высшая школа», 1972

    Акимов Г. В., Основы учения о коррозии и защите металлов, М., 1946;

    Томашов Н. Д., Теория коррозии и защита металлов, М., 1959;

    Эванс Ю. P., Коррозия и окисление металлов, пер. с англ., М., 1962;

    Розенфельд И. Л., Атмосферная коррозия металлов, М., 1960;

Коррозия - это разрушение металлических, керамических, деревянных и других материалов в результате химического или физико-химического взаимодействия. Что же касается причин возникновения такого нежелательного эффекта, то они разные. В большинстве случаев это конструкционная неустойчивость к термодинамическим воздействиям окружающей среды. Давайте подробно разберемся с тем, что такое коррозия. Виды коррозии тоже обязательно нужно рассмотреть, да и о защите от нее поговорить не будет лишним.

Немного общих сведений

Мы привыкли слышать термин «ржавление», который применяется в случае коррозии металла и сплавов. Есть еще такое понятие, как «старение», - оно свойственно полимерам. По сути, это одно и то же. Яркий пример - старение резиновых изделий из-за активного взаимодействия с кислородом. Помимо этого, некоторые пластиковые элементы разрушаются под воздействием Скорость протекания коррозии напрямую зависит от условий, в которых находится объект. Так, ржавчина на металлическом изделии будет распространяться тем быстрее, чем выше температура. Также влияет и влажность: чем она выше, тем быстрее непригодным для дальнейшей эксплуатации. Опытным путем установлено, что примерно 10 процентов металлических изделий безвозвратно списываются, и виной всему - коррозия. Виды коррозии бывают различными и классифицируются в зависимости от типа сред, характера протекания и тому подобного. Давайте рассмотрим их более подробно.

Классификация

В настоящее время существует более двух десятков вариантов ржавления. Мы приведем только самые основные виды коррозии. Условно их можно поделить на следующие группы:

  • Химическая коррозия - процесс взаимодействия с коррозионной средой, при котором и восстановление окислителя проходят в одном акте. Металл и окислитель не разделены пространственно.
  • Электрохимическая коррозия - процесс взаимодействия металла с Ионизация атомов и восстановление окислителя проходят в разных актах, однако скорость во многом зависит от электродного потенциала.
  • Газовая коррозия - химическое ржавление металла при минимальном содержании влаги (не более 0,1 процента) и/или высоких температурах в газовой среде. Чаще всего данный вид встречается в химической и нефтеперерабатывающей промышленности.

Помимо этого, существует еще огромное количество процессов ржавления. Все они и есть коррозия. Виды коррозии, кроме вышеописанных, включают биологическое, радиоактивное, атмосферное, контактное, местное, целевое ржавление и др.

Электрохимическая коррозия и ее особенности

При таком виде разрушения процесс протекает при соприкосновении металла с электролитом. В качестве последнего может выступать конденсат или дождевая вода. Чем больше в жидкости содержится солей и кислот, тем выше электропроводность, а следовательно, и скорость протекания процесса. Что же касается наиболее подверженных коррозии мест металлической конструкции, то это заклепки, сварные соединения, места механических повреждений. В случае если конструкционные свойства сплава железа делают его устойчивым к ржавлению, процесс несколько замедляется, однако все равно продолжается. Ярким примером является оцинковка. Дело в том, что цинк имеет более отрицательный потенциал, нежели железо. По этой простой причине сплав железа восстанавливается, а цинк коррозирует. Однако наличие на поверхности оксидной пленки сильно замедляет процесс разрушения. Безусловно, все виды электрохимической коррозии являются крайне опасными и иногда с ними даже невозможно бороться.

Химическая коррозия

Такое изменение металла встречается довольно часто. Ярким примером является появление окалины в результате взаимодействия металлических изделий с кислородом. Высокая температура в этом случае выступает ускорителем процесса, а участвовать в нем могут такие жидкости, как вода, соли, кислоты, щелочи и растворы солей. Если говорить о таких материалах, как медь или цинк, то их окисление приводит к возникновению устойчивой к дальнейшей коррозии пленки. Стальные же изделия образуют окиси железа. Дальнейшие приводят к возникновению ржавчины, которая не обеспечивает никакой защиты от дальнейшего разрушения, а наоборот, способствует этому. В настоящее время все виды химической коррозии устраняются при помощи оцинковки. Могут применяться и другие средства защиты.

Виды коррозии бетона

Изменение структуры и увеличение хрупкости бетона под воздействием окружающей среды может быть трех видов:

  • Разрушение частей цементного камня - один из самых распространенных видов коррозии. Он имеет место в том случае, если изделие из бетона подвергается систематическому воздействию атмосферных осадков и других жидкостей. В результате вымывается гидрат окиси кальция и нарушается структура.
  • Взаимодействие с кислотами. Если цементный камень будет контактировать с кислотами, то образуется бикарбонат кальция - агрессивный химический элемент для бетонного изделия.
  • Кристаллизация труднорастворимых веществ. По сути, имеется в виду биокоррозия. Суть заключается в том, что микроорганизмы (споры, грибки) попадают в поры и там развиваются, вследствие чего происходит разрушение.

Коррозия: виды, способы защиты

Миллиардные ежегодные убытки привели к тому, что люди стали бороться с этим вредным воздействием. Можно с уверенностью говорить о том, что все виды коррозии приводят к потере не самого металла, а ценных металлоконструкций, на строительство которых тратятся огромные деньги. Сложно сказать, возможно ли обеспечить 100-процентную защиту. Тем не менее, при правильной подготовке поверхности, которая заключается в абразивоструйной очистке, можно добиться хороших результатов. От электрохимической коррозии надежно защищает лакокрасочное покрытие при правильном его нанесении. А от разрушения металла под землей надежно защитит специальная обработка поверхности.

Активные и пассивные методы борьбы

Суть активных методов заключается в том, чтобы изменить структуру двойного электрического поля. Для этого используют источник постоянного тока. Напряжение нужно выбирать таким образом, чтобы повышался изделия, которое нужно защитить. Еще один крайне популярный метод - «жертвенный» анод. Он разрушается, защищая основной материал.

Пассивная защита подразумевает использование лакокрасочного покрытия. Основная задача заключается в том, чтобы полностью предотвратить попадание влаги, а также кислорода на защищаемую поверхность. Как уже было отмечено несколько выше, имеет смысл использовать цинковое, медное или никелевое напыление. Даже частично разрушенный слой будет защищать металл от ржавления. Конечно, данные виды защиты от коррозии металлов действенны только тогда, когда поверхность не будет иметь видимых дефектов в виде трещин, сколов и тому подобного.

Оцинкование в подробностях

Мы уже с вами рассмотрели основные виды коррозии, а сейчас хотелось бы поговорить о лучших методах защиты. Одним из таких является оцинкование. Суть его заключается в том, что на обрабатываемую поверхность наносится цинк или его сплав, что придает поверхности некоторые физико-химические свойства. Стоит отметить, что данный метод считается одним из самых экономичных и эффективных, и это при том, что на металлизацию цинком расходуется примерно 40 процентов от мировой добычи этого элемента. Оцинкованию могут подвергаться стальные листы, крепежные детали, а также приборы и другие металлоконструкции. Интересно то, что с помощью металлизации или распыления можно защитить изделие любого размера и формы. Декоративного назначения цинк не имеет, хотя с помощью некоторых специальных добавок появляется возможность получения блестящих поверхностей. В принципе, этот металл способен обеспечить максимальную защиту в агрессивных средах.

Заключение

Вот мы и рассказали вам о том, что такое коррозия. Виды коррозии тоже были рассмотрены. Теперь вы знаете, как защитить поверхность от преждевременного ржавления. По большому счету, сделать это предельно просто, но немалое значение имеет то, где и как эксплуатируется изделие. Если оно постоянно подвергается динамическим и вибрационным нагрузкам, то велика вероятность возникновения трещин в лакокрасочных покрытиях, через которые влага будет попадать на металл, в результате чего он будет постепенно разрушаться. Тем не менее, использование различных резиновых прокладок и герметиков в местах взаимодействия металлических изделий может несколько продлить срок службы покрытия.

Ну, вот и все по данной теме. Помните о том, что преждевременное разрушение конструкции из-за воздействия коррозии может привести к непредвиденным последствиям. На предприятии большой материальный ущерб и человеческие жертвы возможны в результате ржавления несущей металлоконструкции.

Коррозия металлов - самопроизвольное разрушение металлов вслед­ствие химического или электрохимического взаимодействия их с внешней средой. Коррозионный процесс - гетерогенный (неоднородный), протекает на границе раздела металл - агрессивная среда, име­ет сложный механизм. При этом атомы металла окисляются, т.е.J теряют валентные электроны, атомы переходят через границу раздела во внешнюю среду, взаимодействуют с ее компонентами и образуют продукты коррозии. В большинстве случаев коррозия металлов пройм ходит неравномерно по поверхности, имеются участки, на которых возникают локальные поражения. Некоторые продукты коррозии, образуя поверхностные пленки, сообщают металлу коррозионную стойкость. Иногда могут появляться рыхлые продукты коррозии, имеющие слабое сцепление с металлом. Разрушение таких пленок вызывает интенсивную коррозию обнажающегося металла. Коррозия металла снижает механическую прочность и меняет другие свойства его. Коррозионные процессы классифицируют по видам коррозионных разру­шений, характеру взаимодействия металла со средой, условиям про­текания.

Коррозия бывает сплошная, общая и местная. Сплошная коррозия протекает по всей поверхности металла. При местной коррозии поражения локализуются на отдельных участках поверхности.

Рис. 1Характер коррозионных разрушений:

I – равномерное; II - неравномерное; III - избирательное; IV - пятна; V - язвы; VI - точками или питтингами; VII - сквозное; VIII - нитевидное; IX - поверхностное; X - межкристаллитное; XI - ножевое; XII - растрескивание

Общая коррозия подразделяется на равномерную, неравномер­ную и избирательную (рис. 1).

Равномерная коррозия протекает с одинаковой скоростью по всей поверхности металла; неравномерная - на различных участках поверхности металла с неодинаковой скоростью. При избирательной кор­розии разрушаются отдельные компоненты сплава.

При коррозии пятнами диаметр коррозионных поражений большой глубины. Для язвенной коррозии характерно глубокое поражение участка поверхности ограниченной площади. Как правило, язва находятся над слоем продуктов коррозии. При точечной (питтинговой) коррозии наблюдаются отдельные точечные поражения поверхности металла, которые имеют малые поперечные размеры при значительной глубине. Сквозная - это местная коррозия, вызывающая разрушение металлического изделия насквозь, в виде свищей. Нитевидная коррозия проявляется под неметаллическими покрытиями и виде нитей. Подповерхностная коррозия начинается с поверхности, пи преимущественно распространяется под поверхностью металла, вызывая его вспучивание и расслоение.

При межкристаллитной коррозии разрушение сосредоточено по границам зерен металла или сплава. Этот вид коррозии опасен тем, что происходит потеря прочности и пластичности металла. Ножевая коррозия имеет вид надреза ножом вдоль сварного соединения в сильно агрессивных средах. Коррозионное растрескивание протекает при одновременном воздействии коррозионной среды и растягивающих остаточных или приложенных механических напряжениях.

Металлические изделия в определенных условиях подвергаются коррозионно-усталостному разрушению, протекающему при одновременном воздействии на металл коррозионной среды и переменных I механических напряжений.

По характеру взаимодействия металла со средой различают хими­ческую и электрохимическую коррозии. Химическая коррозия - раз­рушение металла при химическом взаимодействии с агрессивной сре­дой, которой служат неэлектролиты - жидкости и сухие газы. Электрохимическая коррозия - разрушение металла под воздействием электро­лита при протекании двух самостоятельных, но взаимосвязанных процессов - анодного и катодного. Анодный процесс - окислительный, проходит с растворением металла; катодный процесс - восстановительный, обусловлен электрохимическим восстановлением компонентов среды. Современная теория коррозии металлов не исключает совместного протекания химической и электрохимической коррозии, так как в электролитах при определенных условиях возможен перенос массы металла по химическому механизму.

По условиям протекания коррозионного процесса наиболее часто встречаются следующие виды коррозии:

1) газовая коррозия, протекает при повышенных температурах и полном отсутствии влаги на поверхности; продукт газовой корро­зии - окалина обладает при определенных условиях защитными свой­ствами;

2) атмосферная коррозия, протекает в воздухе; различают три вида атмосферной коррозии: во влажной атмосфере - при относитель­ной влажности воздуха выше 40 %; в мокрой атмосфере - при отно­сительной влажности воздуха, равной 100 %; в сухой атмосфере - при относительной влажности воздуха менее 40 %; атмосферная кор­розия - один из наиболее распространенных видов вследствие того, что основная часть металлического оборудования эксплуатируется в атмосферных условиях;

3) жидкостная коррозия - коррозия металлов в жидкой среде; различают коррозию в электролитах (кислоты, щелочи, солевые раст­воры, морская вода) и в неэлектролитах (нефть, нефтепродукты, ор­ганические соединения);

4) подземная коррозия - коррозия металлов, вызываемая в ос­новном действием растворов солей, содержащихся в почвах и грун­тах; коррозионная агрессивность почвы и грунтов обусловлена струк­турой и влажностью почвы, содержанием кислорода и других хими­ческих соединений, рН, электропроводностью, наличием микроорга­низмов;

5) биокоррозия - коррозия металлов в результате воздействия микроорганизмов или продуктов их жизнедеятельности, в биокорро­зии участвуют аэробные и анаэробные бактерии, приводящие к ло­кализации коррозионных поражений;

6) электрокоррозия, возникает под действием внешнего источника тока или блуждающего тока;

7) щелевая коррозия - коррозия металла в узких щелях, зазорах, м резьбовых и фланцевых соединениях металлического оборудования, аксплуатирующегося в электролитах, в местах неплотного контакта металла с изоляционным материалом;

8) контактная коррозия, возникает при контакте разнородных металлов в электролите;

9) коррозия под напряжением, протекает при совместном воздействии на металл агрессивной среды и механических напряжений - постоянных растягивающих (коррозионное растрескивание) и пере­менных или циклических (коррозионная усталость);

10) коррозионная кавитация - разрушение металла в результате одновременно коррозионного и ударного воздействий. При этом за­щитные пленки на поверхности металла разрушаются, когда лопаются газовые пузырьки на поверхности раздела жидкости с твердым телом;

11) коррозионная эрозия - разрушение металла вследствие одновременного воздействия агрессивной среды и механического износа;

12) фреттинг-коррозия - локальное коррозионное разрушение металлов при воздействии агрессивной среды в условиях колебательного перемещения двух трущихся поверхностей относительно друг друга;

13) структурная коррозия, обусловлена структурной неоднород­ностью сплава; при этом происходит ускоренный процесс коррозионного разрушения вследствие повышенной активности какого-либо компонента сплава;

14) термоконтактная коррозия, возникает за счет температурного градиента, обусловленного неравномерным нагреванием поверхности металла.

К.т.н. В.Б. Косачев, А.П. Гулидов, НПК «Вектор», г. Москва

В статье приведены сведения о коррозии металлов, которые могут быть полезны для широкого круга инженерно-технических работников, связанных по роду деятельности с осуществлением практических мер по защите от коррозии оборудования теплоснабжающих организаций.

Коррозия и ее социальное значение

Любой коррозионный процесс приводит к изменениям в свойствах конструкционных материалов. Результатом процесса является «коррозионный эффект», ухудшающий функциональные характеристики металла оборудования, среды и технических систем, расценивающийся как «эффект повреждения» или «коррозионная порча».

Очевидно, что экономические потери, связанные с коррозией металлов, определяются не столько стоимостью прокорродировавшего металла, сколько стоимостью ремонтных работ, убытками за счет временного прекращения функционирования инженерных систем, затратами на предотвращение аварий, в некоторых случаях абсолютно недопустимых с точки зрения экологической безопасности. Оценки затрат, связанных с коррозией (по данным зарубежных источников) приводят к выводу, что общие годовые расходы на борьбу с последствиями коррозии составляют 1,5-2% валового национального продукта. Часть этих затрат неизбежна; было бы нереально полностью исключить все коррозионные разрушения. Тем не менее, можно значительно сократить коррозионные потери за счет лучшего использования на практике накопленных знаний о коррозионных процессах и методов защиты от коррозии, которыми антикоррозионные службы располагают на данный момент.

Процессы коррозии

Понятие «коррозия металлов» включает большую группу химических процессов, приводящих к разрушению металла. Эти процессы резко отличаются друг от друга по внешним проявлениям, по условиям и средам в которых они протекают, а также по свойствам реагирующих металлов и образующихся продуктов реакции. Однако для их объединения имеются все основания, т.к. несмотря на резкие отличия, все эти процессы имеют не только общий результат – разрушение металла, но и единую химическую сущность – окисление металла.

Причина коррозии – термодинамическая неустойчивость металлов, вследствие чего большинство из них встречаются в природе в окисленном состоянии (оксиды, сульфиды, силикаты, алюминаты, сульфаты и т.д.). Таким образом, коррозию можно определить как самопроизвольный процесс, протекающий при взаимодействии металла с окружающей средой, сопровождающийся уменьшением свободной энергии Гиббса и разрушением металла. Коррозия протекает на границе раздела двух фаз «металл – окружающая среда», т. е. является гетерогенным многостадийным процессом и состоит как минимум из трех основных многократно повторяющихся стадий:

1 подвода реагирующих веществ (в том числе коррозионного агента) к поверхности раздела фаз;

2 собственно реакции взаимодействия металла с коррозионной средой, итогом которой является переход некоторого количества металла в окисленную форму с образованием продуктов коррозии, а коррозионного агента в восстановленную форму;

3 отвод продуктов коррозии из реакционной зоны.

Механизмы процессов коррозии

По механизму протекания процесса окисления металла различают химическую и электрохимическую коррозию.

Химическая коррозия . К этому виду коррозии относятся такие процессы окисления металла и восстановления коррозионного агента, при которых передача электронов металла осуществляется непосредственно атомам или ионам окислителя (коррозионного агента), которым наиболее часто является кислород воздуха.

2Ме + О 2 -->2МеО (1)

В практике теплоснабжения наиболее распространенным и практически важным видом химической коррозии является газовая коррозия – коррозия металлов в сухих газах (воздух, продукты сгорания топлива) при высоких температурах. Основными факторами, влияющими на скорость газовой коррозии, являются:

3 природа металла (сплава);

4 состав газовой среды;

5 механические свойства образующихся продуктов коррозии (оксидных пленок);

6 температура.

Так, для железа, основного компонента углеродистых сталей, применяемых для изготовления экранов топочного пространства и конвективной части водогрейных котлов, зависимость скорости газовой коррозии от температуры близко к экспоненциальной, рис. 1. Температура оказывает влияние на состав образующихся на стали оксидных пленок и законы их роста, табл. 1. От состава оксидных пленок зависят их механические и, соответственно, защитные свойства, поскольку плотная сплошная оксидная пленка может защитить металл от дальнейшего окисления. Парциальное давление кислорода также оказывает влияние на скорость газовой коррозии. При окислении ряда металлов при постоянной и достаточно высокой температуре с повышением парциального давления кислорода (Ро 2) скорость окисления сначала резко увеличивается, а затем, при достижении некоторого критического значения (Р о 2) – резко уменьшается и в широком диапазоне давлений остается достаточно низкой, рисунок 2. Большое влияние на скорость окисления металлов оказывает режим нагрева. Колебания температуры (переменный нагрев и охлаждение) даже в небольших интервалах вызывают разрушение оксидных пленок вследствие возникновения больших внутренних напряжений, в результате чего скорость окисления металла резко увеличивается.

Для защиты от газовой коррозии применяют жаростойкое легирование сталей, создают защитные (восстановительные) атмосферы, используют термодиффузионные (на основе алюминия, кремния и хрома) и напыляемые (на основе оксидов алюминия, магния, циркония) защитные покрытия.

Электрохимическая коррозия. Этот вид коррозии наиболее распространен и включает те случаи, когда процессы окисления металла и восстановления окислительного компонента протекают раздельно в среде жидкого электролита, т.е. в среде, проводящей электрический ток. Такими средами могут являться: природная вода, водные растворы солей, кислот, щелочей, а также воздух, почва и теплоизоляционные конструкции, содержащие электролит (влагу) в определенном количестве. Таким образом, процесс электрохимической коррозии представляет собой совокупность двух сопряженно протекающих реакций:

анодной (окисление) Ме → Ме z+ + ze - (2),

и катодной (восстановление) D + ze - → (Dze -) (3),

где D – деполяризатор (окислитель), присоединяющий к себе электроны металла. В качестве деполяризатора могут выступать: кислород, растворенный в электролите, ионы водорода (Н +) и некоторых металлов. Общая схема электрохимического коррозионного процесса металла приведена на рисунке 3, а частный случай ржавления железа описывается реакцией:

2Fe + 2H 2 O + O 2 → 2Fe 2+ + 4 OH - (4).

Возникновение гальванических элементов «катод – анод» на углеродистых сталях (основного конструкционного материала трубопроводов) при их контакте с электролитами происходит в основном из-за дифференциации поверхности сталей на участки с различными электродными потенциалами (теория локальных коррозионных элементов). Причины дифференциации могут быть различны:

7 неоднородность структуры металла (в углеродистых сталях присутствуют фазы – феррит и цементит, структурные составляющие – перлит, цементит и феррит, имеющие различные электродные потенциалы);

8 наличие на поверхности сталей оксидных пленок, загрязнений, неметаллических включений и т.п;

9 неравномерное распределение окислителя на границе «металл-электролит», например, различные влажность и аэрация на различных участках поверхности металла;

10 неравномерность распределения температуры;

11 контакт разнородных металлов.

Сводные данные по Н.Д. Томашову о гальванических коррозионных парах (табл. 2), образование которых возможно на действующих трубопроводах тепловых сетей в присутствии влаги или ее следов, позволяют утверждать, что все случаи ржавления трубопроводов и металлоконструкций тепловых сетей происходят в результате электрохимической коррозии.

Основные виды электрохимической коррозии

и характер коррозионных повреждений металла

В зависимости от условий протекания процесса электрохимической коррозии (вида коррозионной среды) различают атмосферную, почвенную, микробиологическую и жидкостную (кислотную, щелочную, солевую, морскую и пресноводную) коррозию. В зависимости от условий эксплуатации любой из вышеприведенных видов коррозии может протекать при наложении таких эксплуатационных факторов как трение, кавитация, напряжения в металле, воздействие внешних источников постоянного и переменного тока.

В таблице 3 представлены возможные виды электрохимической коррозии трубопроводов и емкостного оборудования теплоснабжающих предприятий, а также неблагоприятные эксплуатационные факторы, способствующие возрастанию скорости коррозионных процессов. На рисунках 5-9 приведены наиболее характерные коррозионные повреждения конструкционных углеродистых сталей, вызываемые различными видами электрохимической коррозии.

Методы защиты от электрохимической коррозии

Защита от электрохимической коррозии представляет комплекс мероприятий, направленных на предотвращение и ингибирование коррозионных процессов, сохранение и поддержание работоспособности оборудования и сооружений в требуемый период эксплуатации.

Методы защиты металлоконструкций от коррозии основаны на целенаправленном воздействии, приводящем к полному или частичному снижению активности факторов, способствующих развитию коррозионных процессов. Методы защиты от коррозии можно условно разделить на методы воздействия на металл и методы воздействия на среду, а также комбинированные методы. Классификация методов представлена на рисунке 10.

Среди методов воздействия на металл, в практике защиты оборудования и трубопроводов теплоснабжающих организаций наибольшее распространение получили защитные и изолирующие покрытия постоянного действия (полимерные, стеклоэмалевые, металлические цинковые и алюминиевые). Воздействие на коррозионную среду (вода) применяется при защите от внутренней коррозии емкостного оборудования и трубопроводов путем ее ингибирования и деаэрации.

В значительной степени снизить скорость коррозионных процессов на трубопроводах можно, применяя электрохимическую защиту. При данном виде защиты электрохимический потенциал трубопровода смещают в необходимую (защитную) область потенциалов (поляризация конструкции) путем его подключения к внешнему источнику тока – станции катодной защиты или протектору.

Следует отметить, что вариант защиты для конкретного объекта должен выбираться исходя из анализа условий его эксплуатации. При этом должны учитываться требования к показателям, характеризующим необходимое качество работы объекта, технологические особенности применения выбранного метода (методов) защиты и достигаемый при этом экономический эффект.

Усложнение условий эксплуатации оборудования и, в первую очередь, теплопроводов, появление специфических загрязнений воздуха и воды требует постоянного совершенствования методов защиты от коррозии. Основываясь на анализе обобщенной информации о коррозионных повреждениях различного оборудования теплоснабжающих предприятий, можно заключить, что основными направлениями при совершенствовании методов защиты от коррозии в теплоснабжении являются: внедрение антикоррозионных и гидроизоляционных покрытий для наружных поверхностей трубопроводов с улучшенными потребительскими свойствами; применение для горячего водоснабжения труб со стеклоэмалевыми и полимерными внутренними покрытиями; применение комбинированных вариантов защиты с совместным использованием установок электрохимической защиты и защитных покрытий.

Таблица 1



Таблица 3.

№ п\п Вид электрохимической коррозии Способ прокладки трубопровода

(вид оборудования)

Дополнительные коррозионные факторы
1. Атмосферная коррозия Наружные поверхности трубопроводов наземной и канальной прокладки (при уровне подтопления и заиливания канала, не достигающим изоляционных конструкций). Поверхности различных металлоконструкций и оборудования, не контактирующие с водой и грунтом. Внутренние напряжения в металле трубопровода и металлоконструкций, ударно-механическое воздействие капели с перекрытий.

Характерные коррозионные повреждения: равномерная коррозия, в местах капели возможна коррозия пятнами.

2. Подземная

коррозия

Наружные поверхности трубопроводов бесканальной прокладки (при нарушении целостности изоляции), канальной прокладки (периодическое подтопление и заиливание канала, сопровождающееся увлажнением тепловой изоляции). Внутренние напряжения в металле, коррозия внешним постоянным и переменным током, воздействие капели.

Характерные коррозионные повреждения: неравномерная коррозия, коррозия пятнами, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода.

3. Подводная коррозия Наружные поверхности трубопроводов канальной прокладки. (Постоянное подтопление канала при отсутствии тепловой изоляции на трубопроводе).

Внутренние поверхности трубопроводов и оборудования химводоподготовки (деаэраторы, фильтры и т.п.)

Внутренние напряжения в металле, коррозия внешним постоянным и переменным током. При неполном погружении трубопровода возможна коррозия по ватерлинии.

Характерные коррозионные повреждения: неравномерная коррозия, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода, язвенные поражения в районе ватерлинии.

На трубопроводах горячего водоснабжения возможно протекание процесса микробиологической коррозии железобактериями.

Характерные коррозионные повреждения: язвенная коррозия (для внутренних поверхностей трубопроводов), точечная коррозия, неравномерная коррозия.